If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+6x-520=0
a = 2; b = 6; c = -520;
Δ = b2-4ac
Δ = 62-4·2·(-520)
Δ = 4196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4196}=\sqrt{4*1049}=\sqrt{4}*\sqrt{1049}=2\sqrt{1049}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{1049}}{2*2}=\frac{-6-2\sqrt{1049}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{1049}}{2*2}=\frac{-6+2\sqrt{1049}}{4} $
| 1200=150+c | | 3(a+1)=4-(a-3) | | 3(a+1)=4-(a-3 | | 10a-2a+4+a=85 | | (x-2)=40-2x) | | 5x-19=17+3(x-4) | | 8(x-4)+(5-x)=0 | | 9x+3=25x+7 | | (3/2a)-7=11 | | 15=50-8p | | 7+4p-2p=8 | | -4p=4=16 | | 3x+7=40° | | 2(q-3)=q | | 8n+2n=11 | | 75D^2+50D+12)y=0 | | 2x-3=(-3x)+2 | | t/8-12=-18 | | 2x-3=(-3x)=2 | | 6.x-1=30 | | 5.m+20=65 | | 2.x-6=24 | | 1.x-6=21 | | 10y+3=12y-3 | | .99x=100 | | 24+5t=184 | | 2x^2+15x-30=46 | | 2x^2+15x-30=23 | | 13=4+3(t+2) | | 2a+-4=10 | | 7x²-5x=0 | | 4y3-40y=0 |